Linguistically Motivated Vocabulary Reduction for Neural Machine Translation from Turkish to English
نویسندگان
چکیده
The necessity of using a fixed-size word vocabulary in order to control the model complexity in state-of-the-art neural machine translation (NMT) systems is an important bottleneck on performance, especially for morphologically rich languages. Conventional methods that aim to overcome this problem by using sub-word or character-level representations solely rely on statistics and disregard the linguistic properties of words, which leads to interruptions in the word structure and causes semantic and syntactic losses. In this paper, we propose a new vocabulary reductionmethod for NMT, which can reduce the vocabulary of a given input corpus at any ratewhile also considering themorphological properties of the language. Ourmethod is based on unsupervised morphology learning and can be, in principle, used for pre-processing any language pair. We also present an alternative word segmentation method based on supervised morphological analysis, which aids us in measuring the accuracy of our model. We evaluate our method in Turkish-to-EnglishNMT task where the input language is morphologically rich and agglutinative. We analyze different representation methods in terms of translation accuracy as well as the semantic and syntactic properties of the generated output. Our method obtains a significant improvement of 2.3 BLEU points over the conventional vocabulary reduction technique, showing that it can provide better accuracy in open vocabulary translation of morphologically rich languages.
منابع مشابه
QCRI-MES Submission at WMT13: Using Transliteration Mining to Improve Statistical Machine Translation
This paper describes QCRI-MES’s submission on the English-Russian dataset to the Eighth Workshop on Statistical Machine Translation. We generate improved word alignment of the training data by incorporating an unsupervised transliteration mining module to GIZA++ and build a phrase-based machine translation system. For tuning, we use a variation of PRO which provides better weights by optimizing...
متن کاملMorpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine Translation
The Arabic language has far richer systems of inflection and derivation than English which has very little morphology. This morphology difference causes a large gap between the vocabulary sizes in any given parallel training corpus. Segmentation of inflected Arabic words is a way to smooth its highly morphological nature. In this paper, we describe some statistically and linguistically motivate...
متن کاملTarget-side Word Segmentation Strategies for Neural Machine Translation
For efficiency considerations, state-of-theart neural machine translation (NMT) requires the vocabulary to be restricted to a limited-size set of several thousand symbols. This is highly problematic when translating into inflected or compounding languages. A typical remedy is the use of subword units, where words are segmented into smaller components. Byte pair encoding, a purely corpus-based a...
متن کاملMorphological pre-processing for Turkish to English statistical machine translation
We tried to cope with the complex morphology of Turkish by applying different schemes of morphological word segmentation to the training and test data of a phrase-based statistical machine translation system. These techniques allow for a considerable reduction of the training dictionary, and lower the out-of-vocabulary rate of the test set. By minimizing differences between lexical granularitie...
متن کاملAutomatic Construction of Morphologically Motivated Translation Models for Highly Inflected, Low-Resource Languages
Statistical Machine Translation (SMT) of highly inflected, low-resource languages suffers from the problem of low bitext availability, which is exacerbated by large inflectional paradigms. When translating into English, rich source inflections have a high chance of being poorly estimated or out-of-vocabulary (OOV). We present a source language-agnostic system for automatically constructing phra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.09879 شماره
صفحات -
تاریخ انتشار 2017